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Abstract

General delay dynamical systems in which uncertainty is present in the form of probability measure
dependent dynamics are considered. Several motivating examples arising in biology are discussed. A
functional analytic framework for investigating well-posedness (existence, uniqueness and continuous
dependence of solutions), inverse problems, sensitivity analysis and approximations of the measures for
computational purposes is surveyed.
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1 INTRODUCTION

The purpose of this presentation is to survey recent as well as forthcoming results in our research efforts on
models with delays and hysteresis where probabilistic uncertainty is present in a significant way. While we
focus our motivation here on examples arising in biological applications (Banks and Bihari, 2001; Banks and
Holte, 2003; Banks and Potter, 2003; Banks and Bortz, 2005a; Banks and Bortz, 2005b; Banks and Davis, to
appear; Banks and Pinter, 2005; Banks and Allnutt, to appear; Banks and Nguyen, to appear; Banks and
Nguyen, work in progress), similar systems arise in other applications as diverse as materials (Banks and
Medhin, submitted; Banks and Webb, 1997a; Banks and Webb, 1997b; Banks and Pinter, 2004; Banks and
Pinter, to appear; Banks and Pinter, submitted; Banks and Pinter, 2005), electromagnetics (Banks and
Gibson, 2005; Banks and Gibson, to appear), physics, communication networks, etc. As is explained here,
there are a wide class of models related to cellular level population dynamics that lead to systems of the
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form o
i(t) = / £t + 0)dP(6) + [(t, x(1)) 1)

where P is a generally unknown probability measure that must be estimated from aggregate or population
level (as opposed to individual level) observations or data. The probability measure P (which we shall
also refer to as a probability distribution when no confusion results) may be discrete, absolutely continuous
(continuous) or a combination of both. In addition to the obvious inverse problems, there are fundamental
questions related to modeling of uncertainty, well-posedness, sensitivity, estimation and approximation. The
primary goal of this note is to outline a theoretical and computational framework to treat these problems.

2 EXAMPLE FROM CELLULAR PATHWAYS: HIV INFEC-
TION
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Figure 1: HIV infection pathway in acutely infected cells.

Our first example is typical of delay systems that arise in biochemical pathways and cellular level kinetics
of drug metabolism as well as other synthesis models. In (Banks and Holte, 2003; Banks and Bortz, 2005a)
the authors study a model for progression of Human Immunodeficiency Virus (HIV) at the cellular level.
The model involves compartments T, A, C, and V for in vitro blood level counts in mice of target (C'D4+)
cells, acutely infected cells, chronically infected cells and active viral particles, respectively. Free virus V
infects target cells T, transforming them into acutely infected cells A which at some time later become



chronically infected cells C'. The basic pathway for infection and production of virus for acutely infected
cells is schematically depicted in Figure 1. For models in which the individual kinetics for loss of envelope and
capsid, integration, transcription, and assembly are not detailed, it is necessary (see (Banks and Holte, 2003))
to include a delay 7; from the time of infection of a target cell T until it first produces free virus V. There
is also some delay 75 before an acutely infected cell A becomes a chronically infected cell C.

Here we outline a brief derivation from first principles (with assumptions based on the biology) that
supports a mathematical model in which the delays are treated as probabilistically distributed across the
population of cells found in a typical in vitro culture.

First consider the delay between initial acute infection and the cell becoming what is termed a chronically
infected cell characterized by differences in cell dynamics (see (Banks and Holte, 2003)). It is biologically
unrealistic (and unacceptable in the modeling to biologists) to expect an entire population of cells to simul-
taneously change infection characteristics precisely 7o (72 > 0) hours after initial viral infection. Therefore,
one might suppose that the delay between initial acute infection and chronic infection varies across the cell
population (thus mathematically characterizing the intercellular variability) according to a probability distri-
bution P, (which is not assumed to necessarily possess a density o — it could have point masses). Denote by
C'(t; T) the subpopulation consisting of chronically infected cells that either maintained their acute infection
characteristics for 7 time units or are the progeny of those same cells. In other words, for some 7 > 0, there
exists a subpopulation C(t;7) of the chronically infected cells which either spent 7 hours as acutely infected
cells (before converting to chronically infected cells) or are descendants of cells that spent exactly 7 hours
as acutely infected cells. Thus, the rate of change in this subpopulation of cells is governed by

C(t;7) = (ro — 00 = 6X(@)C (4 7) +7A(t — 7),

where

X@t)=A@lt)+C{t)+T(t)
is the total number of C'D4+ cells (infected and uninfected). The expected value of the population of chronic
cells is given by integrating with respect to the distribution P, over all possible delay values, obtaining

ﬂﬂ=&KWﬂN=ANCWﬂMMﬂ. (2)

Here the parameters r,,, dc, § and «y are appropriate rate parameters (for details, see (Banks and Holte, 2003)).
Therefore, the rate of change in the total population of chronic cells is governed by

C(t) = &[C(t;1)] = (1 — 60 — 06X (£)E[C(t;7)] + ’y/ooo A(t — 1)dPy(7)

c) = Co,

where Cj is the initial condition for the total chronically infected cell population.

Next consider the delay between viral infection and viral production for the acutely infected cells A(t).
Again, it is unreasonable to expect the entire population of acutely infected cells to simultaneously commence
viral production 7; (11 > 0) hours after infection. Suppose that the delay between infection and production
(for acutely infected cells A(t)) varies across the population with probability distribution P; (again we do not
assume absolute continuity of the associated measure). We also partition the expected total viral population
V' into those virions V4 produced by acutely infected cells and those virions Vi produced by chronically
infected cells so that

V=Vis+ V.

Then we denote by Va(¢;7) the subpopulation of virus which are produced by an acutely infected cell 7
hours after being infected. Thus, the rate of change in this subgroup of virions is governed by

Va(t;7) = —cVa(t;7) + naA(t — 1) — nfVa(t; 7)T(t).

To obtain the (expected) number of virus at time ¢ that have been produced by acutely infected cells, we
must integrate with respect to the distribution P;, over all possible delays

W@=Nwwﬁ=AWWWﬂ@mx



which yields the governing equation for this larger subpopulation of virions
Valt) = &[Va(tir)]
= —cVa(t)+na /000 Va(t;7)dPy (1) — niVa(t)T(¢).
To account for the chronically infected cells as a source of virions, we denote by Vi the subpopulation of
virions produced by chronically infected cells. Thus the equation describing the rate of change in the size of

this subpopulation is '
Vc(t) = —CVC(t) + ncc<t) — nﬂ/o(t)T(t),

where the expected value C' of the total population of chronically infected cells is defined in equation (2).
Therefore, the governing equations for the total population of virus are described by

V() = &[Valt;T)+ Ve(t)]
= —c(Va(t) + Vo(t)) —ni(Va(t) + Ve ()T (t) + ncC(t) + nA/O A(t — 1)dPy(7)

= —cV(t)+na /000 A(t — 7)dPy (1) + ncC(t) —nV ()T (t)
V() = W,

where Vj is the initial condition for the total virions population.
Moreover, we assume that the A and T subclasses have no subpopulation structures, and are therefore
governed by

At) = (ry— 064 —6X(1)A®R) +n/V()T(t) —~ /0 h At — 7)dPy(7)
A0) = A

T{#) = (ry—04—0X(t)—nV(E)T(t)+ S

T0) = T,

with initial conditions Ay and Tp. Note that in equation (3), the rate term with the delay (representing the

delayed conversion of A to C) is simply the negative of the corresponding delay rate term in equation (3).
Finally, we make the change of variables P;(¢) = P;(—¢) so that the distributions are now defined on

(—00,0) instead of (0,00) (we do this to be consistent with the standard notation in the FDE literature),

and obtain the system

V() = —cV(t)+na / ’ A(t+ 0)dPy(0) + neC(t) — n V()T ()
At) = (ro— 64— SX(0)A®M) +nV(E)T(t) — v / ’ A(t+ 0)dPy(0)

Ct) = (ro—da—86X(1)C(t) + 7/_0 A(t + 0)dPy(0)

T{t) = (ry—064—0X(t)—nV(E)T(t)+S,
(3)

which is a vector system of the form (1). Special cases of such systems include those in which the probability
measures are defined on some finite interval @@ = [—r,0] of possible delay values € as in (1).

This model was successfully used (see (Banks and Holte, 2003)) to describe in vitro mice data from Dr.
Michael Emerman’s lab at Fred Hutchinson Cancer Research Center. Using inverse problem methodology
and statistical analysis it was shown that improvement of fit to data by inclusion of the delays = or P;
is statistically significant while inclusion of delays 75 is less important. Indeed, it was found that the
experimental data could not be properly fit with an ODE version (i.e., with the delays omitted) of the
model.



3 EXAMPLE FROM A VACCINE PRODUCTION MODEL

A second class of models (Banks and Allnutt, to appear) that illustrate the type of problems focused on here
involve the use of shrimp grown in production “raceways” (essentially large growth chambers where envi-
ronmental factors such as temperature, oxygen, nutrient levels, etc., can be carefully controlled) artificially
infected to efficiently produce large quantities of an associated vaccine. Scientifically, this entails recruiting
the biochemical machinery in an existing biomass for the production of a vaccine or antibody by infection
using a virus carrying a passenger gene for the desired antibody response.

While the model of (Banks and Allnutt, to appear) is specific to virus growth and vaccine production in
shrimp, the implications for other crustaceans are obvious. And of course the shrimp models we investigate
can serve as a foundation for understanding viral progression in other species important to marine agriculture.
The mathematical goal is to model a system wherein one uses shrimp as a scaffold organism to produce
biological countermeasures. In such a system one might first stock shrimp postlarvae and allow them to
grow normally in the controlled environment. Then one infects them with a recombinant viral vector (e.g.,
recombinant Taura Syndrome virus or rTSV in the example developed in (Banks and Allnutt, to appear))
expressing a foreign antigen, resulting in vaccine production in live infected shrimp.

To mathematically demonstrate the feasibility of this approach one considers a hybrid model of the
shrimp biomass/countermeasure production system which has two components: biomass production, and
production of countermeasure (antibody/vaccine). The output of the biomass production model is input to
the vaccine production model. For initial investigations the amount of vaccine produced is assumed equal
to the total infected biomass. Thus, the vaccine production model will essentially follow the course of the
viral dynamics in the shrimp.

The effort requires modeling the dynamics of shrimp at the population level. In such models ignoring
structure in constructing mathematical models for the dynamics of shrimp is unrealistic, since shrimp have
size dependent characteristics as well as responses to external environment. An appropriate beginning
model is based on the classical McKendrick-von-Foerster /Sinko-Streifer size-structured population equations
(Kot, 2001; Metz and Diekmann, 1986) with mass as the structure variable, i.e., one equates the size variable
with the mass in the model.

While there appears to be a dearth of literature on modeling epidemics in shrimp populations, in (Lotz and
Breland, 2003) the authors develop a non-structured five compartment epidemic model of TSV that includes a
Reed-Frost transmission process in closed populations of shrimp (Litopenaeus vannamei). However, structure
can play an important role in the study of viral epidemiology in shrimp. Moreover, experimental results
(Hasson and White, 1999) suggest that the mortality rate in acutely infected shrimp depends on the length of
time that the shrimp remain acute. Also, individuals in the latent phase have varying residency times before
they progress into the acute phase. To incorporate all of these features, the authors of (Banks and Allnutt, to
appear) attempted to model the progression of TSV in shrimp in a system of delay PDEs. However, it is
difficult to correctly account for the different residency periods of individual shrimp in this fashion as the
size of the shrimp is a function of time. Instead of tracing back in time to incorporate delays, a different
approach involves recording the variable residency times in the different stages by introducing a new variable
which one calls the class age of an individual. The class age of an individual in a given stage represents the
length of time that the individual spends in that stage and serves as a surrogate for time delays. A similar
approach has been used to investigate a linear cell population model. In such models, cells are assumed
capable of simultaneous proliferation and maturation where in the proliferating phase, cells are committed
to undergo cell division some time units after entering this phase (Adimy and Pujo-Menjouet, 2003).

In the vaccine production stage the shrimp are infected by distributing chopped dead shrimp infected
with a recombinant virus evenly throughout the raceway. This transfected biomass is sufficiently large so
that most of the shrimp can be infected in a short period of time, such as one day. There are other modes of
transmission of virus in shrimp, such as cohabitation with infected shrimp that may be shedding the virus into
the surrounding medium (waterborne infection). However, compared to the probability of shrimp becoming
infected via ingestion, these modes of transmission can be assumed (reasonably for a first investigation) to
be negligible. Hence one might only assume infection via ingestion of dead transfected biomass. It might
be further assumed that all the shrimp have an equal chance of becoming infected by eating the infected
biomass. A reasonable time interval for infection is 7 to 10 days. From (Lotz and Breland, 2003) and (Dhar



and Walker, 2004) one knows that during this time interval almost no shrimp progress into the chronic state.
Therefore it is reasonable to consider the following three compartment states: susceptible (.5), latently
infected (L) and acutely infected (A) in a model. In this model, it is assumed that shrimp will become
instantly infected (i.e., progress into latent state) as soon as they ingest some of the infected biomass. As we
have noted earlier, however, experimental observations suggest that there exists a temporal delay between
the initial latent infection and initial acute infection (Hasson and White, 1999). Moreover, it is biologically
unrealistic to expect all members of the shrimp population to progress into the acute phase at a fixed number
of days after initial latent infection. In addition the shrimp in the acute phase have varying mortality rates
because of the different times that they progress into the acute phase and also due to the differences in
genetic make-up of the host. As we have already noted, it is difficult to account for the class age history
(i.e., the length of time that shrimp spend in a state) of shrimp in a particular (latent or acute) state using
a system of delay PDE’s with only size as the structure variable. This is because it is not obvious how to
correctly represent the integral involving the delay. As an alternative, in order to model variable residency
times one may keep track of the class age and the size of shrimp by incorporating both size structure and
class age structure into the latent and acute states.

Based on experimental findings, it is reasonable to assume that there is a positive probability that shrimp
can stay in each the latent and acute state for more than 7 to 10 days. Thus one can assume that the class
age interval for both states is the same as the time interval Ty that we consider in our model. Note that all
shrimp from the biomass production raceway are healthy; there are no latently infected or acutely infected
shrimp in the raceway at time t = 0. We also know that shrimp in the acute state stop growing, which
means that the growth rate in this state is g = 0.

Based on the above discussions, the vaccine production model developed in (Banks and Allnutt, to
appear) is given by

18(x,t) + 0.(9° () S (x, 1)) + m” (x)S(z,t) = —\S(x, 1),
Qi L(x,t,0) + 9. (9" (x) L(x,1,0)) + pL(x,1,0) +m" (z)L(x,1,0) = —pr(0) L(,1,6),
O A(z,t,0) + Do Az, t,0) + m™ (0) A(z, t,0) = 0,

L(z,t,0) = AS(z, 1),

mLamzéﬂ@mﬁmmw;

S(0,t) =0, L(0,t,0) =0, A(0,t,0)=0,
S(x,0) = 5%x), L(x,0,0) =0, A(x,0,0) =0,

where (2,t,0) € [Tmin, Tmax] X [0, Tv] X [0, Ty]. In the above S(z,t) denotes the density of individuals having
mass z at time ¢t and 0; = e The function L(x,t,0) denotes the density of individuals having mass x

at time ¢ that have spent 6 days in the latent state , whereas the function A(x,t,6) denotes the density of
individuals having mass x at time ¢ that have spent 6 days in the acute state. The quantity g° (z) denotes
the growth rate of individuals in the susceptible state , g~ (z) denotes the growth rate of individuals in the
latent state. The function m®(z) denotes the mortality rate of individuals in the susceptible state, and the
function m” () denotes the mortality rate of individuals in the latent state, and m* () denotes the mortality
rate of the shrimp that spend 6 days in the acute state. The latent to acute probability density rate function
pr(0) = Pj () defined for 6 € [0,Ty] denotes the rate at which the shrimp in the latent state that have
spent 6 days in the latent state become acutely infected, while the quantity A denotes the infection rate due
to ingestion of chopped infected shrimp. Finally SY(z) denotes the initial population density of susceptible
shrimp produced from the biomass production model.

We note that this is again a probability distribution (Pr) dependent dynamical system (in this case a



complicated system of partial differential equations) for which the distribution Pr, must be estimated in some
type of inverse problem.

4 PROBLEM FORMULATION FOR DISTRIBUTION DEPEN-
DENT DYNAMICS

In both the examples cited above as well as in many others, a major effort involves estimation of the
probability distributions P from data. A typical inverse problem consists of minimizing the output least
squares criterion

JP) =Y [otts P) - di| o)

where {czl} is the data and z(t; P) represents the solution to the distribution dependent dynamics such as
(1), (3), or (4). The minimization is to be carried out over the space P(Q) of probability measures defined
on a set Q of possible parameter values. For example, in the systems presented above, the delay times or
residency times are restricted to some finite interval Q = [—r,0] or Q = [0, Ty], respectively. In addition
to such inverse or estimation problems, we are also concerned with other questions for problems that have
distribution dependent dynamics including the existence and uniqueness of solutions to the dynamical system,
continuous dependence of solutions, sensitivity of solutions with respect to the probability distributions, and
numerical approximations. In order to deal with such questions (either theoretical or computational) one
needs a topology on the measure space P(Q). Indeed, one needs a number of items to develop theoretical
and computational foundations including

(i) A topology on P(Q),

(ii) Continuity of P — J(P) in this topology,

(iii) Compatible compactness results (for well-posedness),
(iv) Approximations in this topology (for computations).

It is fortunate that probability theory offers significant conceptual help toward a possible complete, tractable
computational methodology (Billingsley, 1968). The primary tool is the Prohorov metric, which can be
formally defined as follows. Suppose (@, d) is a complete metric space. For any closed subset F' C @ and
€ > 0, define

Fe={geQ:ddq) <eqeF}.
Define the Prohorov metric p : P(Q) x P(Q) — R* by
p(P1,Py) = inf{e >0: P [F] < P[F]+e¢, F closed, F C Q}.
This can be shown to be a metric on P(Q) that satisfies
(a) (P(Q),p) is a complete metric space,
(b) If Q is compact, then (P(Q), p) is a compact metric space.

We note that the definition of p is not intuitive. It is not clear, for example, what “P, — P” in p metric
means. One finds the following important characterization (Billingsley, 1968).

Theorem 1 Given Py, P € P(Q), the following convergence statements are equivalent:

(i) p(Pr,P) —0,

(i) / fdPy(q) — / fdP(q) for all bounded, uniformly continuous f : Q@ — R*,
Q Q



(iii) Px[A] — P[A] for all Borel sets A C Q with P[0A] = 0.
Additional useful results include:

e Let C5(Q) denote the topological dual of Cg(Q), where Cp(Q) is the usual space of bounded continuous
functions on @ with the supremum norm. If we view P(Q) C C5(Q), convergence in the p topology is
equivalent to weak™ convergence in P(Q),

e Convergence in the p metric is equivalent to convergence in distribution.

Considering (ii) of Theorem 1, it is readily argued that the dynamics of systems such as (1) (and (3),
(4)) are p—continuous in P on P(Q). Standard arguments from the theory of differential equations can then
be used to argue that the mapping P — x(¢; P) is also continuous on (P(Q),p). This yields immediately
that

n 2
P-JpP) =Y ’x(ti; P) - d,
i=1
is continuous in the p topology. Continuity of P — J(P) and compactness of P(Q) (each with respect to
the p metric) allows one to assert the existence of a solution to min J(P) over P € P(Q).

As we shall see below, the Prohorov metric is also fundamental to development of a sensitivity theory as

well as “finite element” type approximation schemes for the systems of interest here.

4.1 Abstract Formulation

Before we present some theoretical results on a class of distribution dependent problems, we illustrate how
to derive an abstract Cauchy formulation in a complex Banach space for a typical delay system example such
the HIV model above. First, we assume the HIV system derived in Section 2 only depends on absolutely
continuous (continuous) distributions; that is, dP;(7) = p;(7)dr for i = 1,2 where p;(7) are probability
densities. A more general framework for discrete distributions and mixed (a combination of continuous and
discrete) distributions is discussed in the next section where one assumes the form

k
P() =3 piddn(7) ()

and
.

k
P(r) =Y pidn(0)+ [ €1 @

-T

Here A is the Dirac measure with atom (mass) at 7 for the discrete and mixed measures, respectively.
Returning to the HIV model we let v = (V, A,C,T)" and x(t) = (v(t),v;) € X = R* x L*(—r,0;R?).

For 0 < r < oo, we denote the parameter space M = L*(—r,0) x L*(—r,0) and M. = {(p1,p2) € M |p1,
0

p2 > 0 and p;i(7)dT = 1}. Then the HIV system derived in equation (3) can be rewritten as an abstract
Cauchy problgrrn

z(t) = Az(t)+ f2(t), t>0

z(0) = o, (8)
where fo(t) = ((0,0,0,59)7,0) € X, and 29 = (9,¢) € X. Here A is a nonlinear operator such that A :

D(A) € X — X and A, 6) = (L01,0) + (), =) where D(A) = {(1,6) € X |6 € H'(~r,0;E*) and y =



#(0)}. Furthermore, for (1, ¢) € R* x L*(—r,0; R?),

—c 0 no 0
0 =084 0 0
L(777 (b) - O O Ty — 50 0 n
0 0 0 Ty — Oy

0
+nald,2)](4,4) é(T)pr(T)dr

0

+7([03,2)) 4,4y = [0(2,2)) (4,4)) B o(7)p2(T)dr,

—QI4
4

—5(2 ni)N2 + anina
ROD=1 s |

—6(> _mi)na — amma

L =2 J

where [0(; j)](4,4) is a 4 x 4 matrix with a one in the (i, 4)" component and zeros everywhere else. In (Banks
and Bortz, 2005a), (Banks and Holte, 2003) the mass action product nonlinearities in f; are replaced by
saturating nonlinear functions — see the definition of f; in (Banks and Bortz, 20054), (Banks and Holte, 2003).

Once an abstract Cauchy formulation is constructed, existence and uniqueness of solutions for equation
(8) follow from the results in (Banks and Bortz, 2005b; Banks and Nguyen, to appear) which are summarized
in Section 4.2 below. Moreover, theoretical results in (Banks and Nguyen, to appear) also provide continuous
dependence of solutions along with the derivation of the sensitivity function for general nonlinear ordinary
differential equations (ODEs) in a Banach space. Here we only show the construction of the abstract Cauchy
problem for delay systems with continuous probability measures. However, an abstract Cauchy formulation
for delay systems with discrete and mixed distributions of the form (6) and (7), respectively, can also
be constructed using similar concepts but with different parameter spaces. These theoretical results and
associated parameter spaces of probability measures are the focus of the next section.

4.2 Theoretical Results

In this section we recall theoretical results that treat delay systems with absolutely continuous (continuous)
distributions. Interested readers can find more details on the theories and the proofs in (Banks and Nguyen,
to appear). As one can see from the previous section, time delay problems with absolutely continuous
(continuous) distributions are a special case of an abstract nonlinear ODE where the state space is a general
Banach space X and the parameter space M. is a convex subset of a Banach space M such as M = L? x L?.
Therefore, consider a general nonlinear ODE of the form

&(t) = f(t, (), n), (9)
where f : Ry x X x M — X and X and M are complex Banach spaces. We define the successive
approzimations for system (9) to be the functions, 20, 2!, ..., given recursively by

2°(t,to,z0, ) = o,
t
I’k+1(t,t07xo,‘u) = I0+/ f(Svl’k(Svthxovﬂ)»,U) dS,
to
for Kk =0,1,2,.... Then one can establish the following theoretical results.



Lemma 1 (Ezistence and Uniqueness of Solutions) Let f: Ry x X x M — X be continuous and

If(t,z1,p) — f(t, w2, 1) < C oy — 22|

for some constant C' > 0. Then the successive approximations zF

unique solution x of (9) such that x(to,to, xo, 1t) = Zo.

converge uniformly for t € [to,T] to a

Lemma 2 (Continuous Dependence of Solutions on Parameters) Let f € C[R;y x X x M, X] and for u = pyo,
let z(t, to, xo, o) be the solution of
&= f(t,z, po), (to) = o,

existing on [to, T]. Assume further that

lim f(tafvﬂ) = f(t,%/to),

K=o

uniformly in (t,z) and for (t,x1, ), (t,za, pu) € Ry x X x M,

|f(t7(E1,,LL) - f(tvaalLL)' S CV|:E1 — T2

for some constant C > 0. Then the differential system

j::f(twrau)v x(tO):xO;
has a unique solution x(t,tq, xo, 1) satisfying

lim z(t,to, zo, u) = z(t,to, To, o), t € [to,T)-

H—Ho
Even though the results given here are under the assumed global Lipschitz condition, similar results can also
be established under the weaker assumptions of a local Lipschitz condition and f being dominated by an
affine function. We let B(X,Y") denote the space of bounded linear operators from X onto Y and summarize

a sensitivity theory for delay systems with absolutely continuous (continuous) measures in Theorems 2 and
3.

Theorem 2 Suppose the function f(t,z,u) of (9) has continuous Frechet derivatives f(t,x,u) with respect
to x and f,(t,z, 1) with respect to p with

|fw(t,l‘,ﬂ)‘ < My and |fu(t7xa/j/)| < M

0

for some constants My > 0 and My > 0. Then the Frechet derivative y(t) = a—x(t,to,xo,u) exists with y(t)
w

in B(M, X) satisfying the equation

y(t> = fw(t,x(t,to,xo,u),u)y(t)+f“(t,x(t,t0,xo,u),u),
y(to) = 0,

fort > t.

With the parameter space of probability density functions M., which is a convex subset of a Banach space
M, the sensitivity theory (Theorem 2) above can also be applied using directional derivatives instead of the
Frechet derivative. However, it is shown in (Banks and Nguyen, to appear) that the directional derivative
of a continuous function g is the Frechet derivative on M restricted to ¢ — p where p,q € M..

In order to accommodate delay problems with Dirac (discrete) measures or measures with a continuous
component and a saltus component, the theoretical results above are extended to a general convex metric
space. This is necessary because the parameter space associated with the Prohorov metric is no longer
a Banach space but only special case of a convex metric space (M1,dnr,). For discrete measure delay
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systems where the measures are defined in (6), the parameter space (M;j,day,) is normally chosen to be
a topology with the Prohorov metric (P(Q), p). Although the Prohorov metric is not conceptually easy to
use, it generates a similar topology to the weak L? topology (e.g., see (Banks and Pinter, 2005)) which is
of course the same as the weak* topology in this case. Therefore, the Prohorov metric may be applied in
numerical approximation in distribution dependent problems taking advantage of its relation in convergence
to the weak L? convergence. For delay systems with mixed measures as defined in (7), the parameter space
can be based on a combination of the Prohorov metric topology and the weak L? topology for compatibility.
Therefore, Banks, Dediu and Nguyen have extended the theoretical results mentioned above to the case
where the parameter space is a convex metric space. Let (M, dnr, ) denote a general convex metric space

with distance daq, and X denote a general complex Banach space. Consider a general nonlinear abstract
ODE

i‘(t):f(tax(t)’/fél)’ l‘(O) = 0, (10)

where f : Ry X X x M; — X is continuous in all three variables and Frechet differentiable in z. Here
the solution x € X and the parameter pu; € Mj. The conditions for and statement of existence and
uniqueness of solutions of equation (10) along with continuous dependence of solutions for the general convex
metric parameter space are similar to those for the situation detailed above where the parameter space is
a general complex Banach space; therefore, those theoretical results are not repeated here. When deriving
the sensitivity theory for the convex metric parameter space case, the directional derivative is used instead
of the Frechet derivative with respect to the measures.

Given any two arbitrary points u1,v € (M1, dnr, ), we define the directional derivative § f (¢, x, p1;v — p1)
of f at puy in the direction v — 1 to be the value of the limit

lim f(t,ﬂ?,/,él + 6(1/ — Ml)) — f(t’xhul)

e—0 €
>0

= (5f(t,l',/1/1;l/—/1/1),

provided this limit exists in X. A sensitivity theory for a convex metric parameter space is stated next; more
details and proofs can be found in (Banks and Nguyen, work in progress).

Theorem 3 Suppose the function f(t,x,u1) of (10) has a Frechet derivative f.(t,z, 1) with respect to x
such that f, € C[Ry x X x My, B(X,X)] and |f.(t,z,pu1)] < My for some constant My > 0. More-
over, assume f also has a continuous directional derivative 0f(t,x,pu1;v — p1) with respect to py in the
direction of (v — p1) such that |6 f(t,x, u1;v — p1)| < My where My > 0. Then the directional derivative
y(t) = dx(t, u1;v — p1) exists, with y : Ry x X x My — X, and y satisfies the equation

y(t) = fw(t7x(tat07x0aul)7,U/l)y(t)+5f<t7x(t7t07x07/-111)7/’(‘1;y_//‘1)7
y(to) = 0. (11)
Having presented theoretical results to deal with delay differential equations where the time delay is

distributed with different types of probability measures (i.e, absolutely continuous, continuous, discrete and
mixed measures), we next discuss some numerical approximation issues for this class of problems.

4.3 Approximation Issues

We first note that even when the parameter set () is finite dimensional, the metric space (P(Q), p) is infinite-
dimensional and hence one must use finite-dimensional approximations to obtain tractable computational
algorithms. To this end, one may prove (see (Banks and Bihari, 2001))

Theorem 4 Let QQ be a complete, separable metric space with metric d, B the class of all Borel subsets of
Q and P(Q) the space of probability measures on (Q,B). Let Qo = {q;};2, be a countable, dense subset of
Q. Then the set of P € P(Q) such that P has finite support in Qo and rational masses is dense in P(Q) in
the p metric. That is,

k k
Po(@Q)={PeP(Q): P= ijéq].,k € N, q; € Qo,p; rational 7ij =1}

Jj=1 Jj=1

11



is dense in (P(Q), p), where o4, is the Dirac measure with atom at q;.

It is straight forward to use the ideas and results associated with this theorem to develop computationally

efficient schemes. Given Qg = U Qn with Qp = {qJM ;”il (a “partition” of @) chosen so that @4 is dense

M=1
in @, define

k
PM(Q)={PecPQ): ijqu q] € Qum, p; rational ij =1}

j=1 j=1
Then we find
(i) PM(Q) is a compact subset of (P(Q), p),
(i)PY(Q) c PM*H(Q),

(iii) “PM(Q) — P(Q)” in the p topology; that is, elements in P(Q) can be approximated in the p metric
by elements of PM for M sufficiently large.

These ideas and results can then be used to establish a type of “stability” of the inverse problem (see
(Banks and Bihari, 2001), (Banks and Kunisch, 1989)). We first define a series of approximate problems

consisting of minimizing
n
M) = Z ‘x(ti§PJV1) -
i=1

over Py; € PM(Q). Then we have

Theorem 5 Let Q) be a compact metric space and assume solutions x(t; P) are continuous in P on (P(Q), p).
Let Qq be a countable dense subset of Q with Qp = {qu}M1 and PM(Q) as above so that (i)-(iii) holds.

Suppose P (d*) is the set of minimizers for J(Py;) over Py € PM(Q) corresponding to the data {d*} and
P*(d) is the set of minimizers over P € P(Q) corresponding to d, where d*, d € R™ are the observed data such

that d* — d. Then dist(Py;(d®), P*(d)) — 0 as M — oo and d* — d. Thus, the solutions depend continuously
on the data and the approximate problems are method stable as formulated in (Banks and Kunisch, 1989).

Of course, for infinite dimensional state systems such as (1), (3) and (4), one would also approximate
the solutions z(t; Py;) by finite dimensional approximate solutions x? (¢; Py;) to obtain a completely finite
dimensional problem. A version of the above theorem can be given for this simultaneous state/parameter
approximation using the approach for state/parameter approximation found in (Banks and Kunisch, 1989).

The “delta measure” approximations given above are essentially zero—order splines. As one might expect,
higher order schemes can readily be developed. An example of linear spline schemes has been developed in
(Banks and Pinter, 2005) and further investigated in (Banks and Davis, to appear) and can be summarized
in the following theorem.

Theorem 6 Let F be a weakly compact subset of L*(Q), Q compact and let Pr(Q) = {P € P(Q) : P' =
p,p € F}. Then Px(Q) is compact in (P(Q), p). Moreover, if we define {lj\/[} to be the linear splines on @

corresponding to the partition @y, where UQM is dense @, and define

M
PM = Z lej\/I, b;VI rational }.
Then if
7)_7:1\4 = {PM 6 P / Ma pM G PM}?

we have UP].‘I\/I is dense in (Pr(Q),p).
M
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5 CONCLUDING REMARKS

The framework outlined above, while most useful, is not complete. Statistical aspects of the inverse problems
for estimation of measures as discussed above are still under investigation. The approximations (delta and
splines) lead to finite dimensional inverse problems for which standard asymptotic theory (see Chapter 12
of (Seber and Wild, 1989)) for standard errors and confidence intervals (using the sensitivity functions dis-
cussed above) can be applied. However, an analogous asymptotic theory for the original infinite dimensional
problems involving (5) of Section 4 has yet to be rigorously developed.
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